Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy.
نویسندگان
چکیده
The Na+/I- symporter (NIS) present in the membranes of thyroid cells is responsible for the capacity of the thyroid to concentrate iodide. This allows treatment of thyroid cancers with 131I. We propose to enlarge this therapeutic strategy to nonthyroid tumors by using an adenoviral vector to deliver the NIS gene into the tumor cells. We constructed a recombinant adenovirus encoding the rat NIS gene under the control of the cytomegalovirus promoter (AdNIS). Infection of SiHa cells (human cervix tumor cells) with AdNIS resulted in perchlorate-sensitive 125I uptake by these cells to a level 125-225 times higher than that in noninfected cells. Similar results were obtained for other human tumor cell lines, including MCF7 and T-47D (mammary gland), DU 145 and PC-3 (prostate), A549 (lung), and HT-29 (colon), demonstrating that the AdNIS vector can function in tumor cells of various origins. In addition, AdNIS-infected tumor cells were selectively killed by exposure to 131I, as revealed by clonogenic assays. To assess the efficiency of this cancer gene therapy strategy in vivo, we injected the AdNIS vector in human tumors (SiHa or MCF7 cells) established s.c. in nude mice. Immunohistological analysis confirmed the expression of the NIS protein in the tumor. Three days after intratumoral injection, AdNIS-treated tumors could specifically accumulate 125I or 123I, as revealed by kinetics and imaging experiments. A quantitative analysis demonstrated that the uptake in AdNIS-injected tumors was 4-25 times higher than that in nontreated tumors. On average, 11% of the total amount of injected 125I could be recovered per gram of AdNIS-treated tumor tissue. Altogether, these data indicate that AdNIS is very efficient in triggering significant iodide uptake by a tumor, outlining the potential of this novel cancer gene therapy approach for a targeted radiotherapy.
منابع مشابه
Targeted radiotherapy for prostate cancer with an oncolytic adenovirus coding for human sodium iodide symporter.
PURPOSE Oncolytic adenoviruses are promising tools for cancer therapy. Although several clinical reports have indicated both safety and promising antitumor capabilities for these viruses, there are only a few examples of complete tumor eradication. Thus, the antitumor efficacy of oncolytic adenoviruses needs to be improved. One potentially useful approach is combination with radiotherapy. EXP...
متن کاملRadioiodine therapy for castration-resistant prostate cancer following prostate-specific membrane antigen promoter-mediated transfer of the human sodium iodide symporter
Radioiodine therapy, the most effective form of systemic radiotherapy available, is currently useful only for thyroid cancer because of the thyroid-specific expression of the human sodium iodide symporter (hNIS). Here, we explore the efficacy of a novel form of gene therapy using prostate-specific membrane antigen (PSMA) promoter-mediated hNIS gene transfer followed by radioiodine administratio...
متن کاملRadioisotope concentrator gene therapy using the sodium/iodide symporter gene.
We demonstrate a novel method of concentrating radiation for tumor imaging or killing. The rat sodium/iodide symporter gene (rNIS) was cloned into a retroviral vector for transfer into cancer cells to mimic the iodide uptake of thyroid follicular cells. In vitro iodide transport shows that the symporter functions similarly in rNIS-transduced tumor cells and rat thyroid follicular cells. rNIS-tr...
متن کاملCancer Therapy: Preclinical Targeted Radioiodine Therapy of Neuroblastoma Tumors following Systemic Nonviral Delivery of the Sodium Iodide Symporter Gene
Purpose: We recently reported the significant therapeutic efficacy of radioiodine therapy in various tumor mouse models following transcriptionally targeted sodium iodide symporter (NIS) gene transfer. These studies showed the high potential of NIS as a novel diagnostic and therapeutic gene for the treatment of extrathyroidal tumors. As a next crucial step towards clinical application of NIS-me...
متن کاملTargeted radioiodine therapy of neuroblastoma tumors following systemic nonviral delivery of the sodium iodide symporter gene.
PURPOSE We recently reported the significant therapeutic efficacy of radioiodine therapy in various tumor mouse models following transcriptionally targeted sodium iodide symporter (NIS) gene transfer. These studies showed the high potential of NIS as a novel diagnostic and therapeutic gene for the treatment of extrathyroidal tumors. As a next crucial step towards clinical application of NIS-med...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 60 13 شماره
صفحات -
تاریخ انتشار 2000